Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 290
1.
bioRxiv ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38585820

The OmicsFootPrint framework addresses the need for advanced multi-omics data analysis methodologies by transforming data into intuitive two-dimensional circular images and facilitating the interpretation of complex diseases. Utilizing Deep Neural Networks and incorporating the SHapley Additive exPlanations (SHAP) algorithm, the framework enhances model interpretability. Tested with The Cancer Genome Atlas (TCGA) data, OmicsFootPrint effectively classified lung and breast cancer subtypes, achieving high Area Under Curve (AUC) scores - 0.98±0.02 for lung cancer subtype differentiation, 0.83±0.07 for breast cancer PAM50 subtypes, and successfully distinguishe between invasive lobular and ductal carcinomas in breast cancer, showcasing its robustness. It also demonstrated notable performance in predicting drug responses in cancer cell lines, with a median AUC of 0.74, surpassing existing algorithms. Furthermore, its effectiveness persists even with reduced training sample sizes. OmicsFootPrint marks an enhancement in multi-omics research, offering a novel, efficient, and interpretable approach that contributes to a deeper understanding of disease mechanisms.

2.
Transl Psychiatry ; 14(1): 165, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38531832

Alcohol use disorder (AUD) is the most prevalent substance use disorder worldwide. Acamprosate and naltrexone are anti-craving drugs used in AUD pharmacotherapy. However, molecular mechanisms underlying their anti-craving effect remain unclear. This study utilized a patient-derived induced pluripotent stem cell (iPSC)-based model system and anti-craving drugs that are used to treat AUD as "molecular probes" to identify possible mechanisms associated with alcohol craving. We examined the pathophysiology of craving and anti-craving drugs by performing functional genomics studies using iPSC-derived astrocytes and next-generation sequencing. Specifically, RNA sequencing performed using peripheral blood mononuclear cells from AUD patients with extreme values for alcohol craving intensity prior to treatment showed that inflammation-related pathways were highly associated with alcohol cravings. We then performed a genome-wide assessment of chromatin accessibility and gene expression profiles of induced iPSC-derived astrocytes in response to ethanol or anti-craving drugs. Those experiments identified drug-dependent epigenomic signatures, with IRF3 as the most significantly enriched motif in chromatin accessible regions. Furthermore, the activation of IRF3 was associated with ethanol-induced endoplasmic reticulum (ER) stress which could be attenuated by anti-craving drugs, suggesting that ER stress attenuation might be a target for anti-craving agents. In conclusion, we found that craving intensity was associated with alcohol consumption and treatment outcomes. Our functional genomic studies suggest possible relationships among craving, ER stress, IRF3 and the actions of anti-craving drugs.


Alcoholism , Craving , Humans , Craving/physiology , Leukocytes, Mononuclear , Multiomics , Alcoholism/complications , Alcohol Drinking , Ethanol , Chromatin , Interferon Regulatory Factor-3/pharmacology
3.
J Womens Health (Larchmt) ; 32(11): 1229-1240, 2023 Nov.
Article En | MEDLINE | ID: mdl-37856151

Background: Antidepressants are among the most prescribed medications in the United States. The aim of this study was to explore the prevalence of antidepressant prescriptions and investigate sex differences and age-sex interactions in adults enrolled in the Right Drug, Right Dose, Right Time: Using Genomic Data to Individualize Treatment (RIGHT) study. Materials and Methods: We conducted a retrospective analysis of the RIGHT study. Using electronic prescriptions, we assessed 12-month prevalence of antidepressant treatment. Sex differences and age-sex interactions were evaluated using multivariable logistic regression and flexible recursive smoothing splines. Results: The sample consisted of 11,087 participants (60% women). Antidepressant prescription prevalence was 22.24% (27.96% women, 13.58% men). After adjusting for age and enrollment year, women had significantly greater odds of antidepressant prescription (odds ratio = 2.29; 95% confidence interval = 2.07, 2.54). Furthermore, selective serotonin reuptake inhibitors (SSRIs) had a significant age-sex interaction. While SSRI prescriptions in men showed a sustained decrease with age, there was no such decline for women until after reaching ∼50 years of age. There are important limitations to consider in this study. Electronic prescription data were cross-sectional; information on treatment duration or adherence was not collected; this cohort is not nationally representative; and enrollment occurred over a broad period, introducing confounding by changes in temporal prescribing practices. Conclusions: Underscored by the significant interaction between age and sex on odds of SSRI prescription, our results warrant age to be incorporated as a mediator when investigating sex differences in mental illness, especially mood disorders and their treatment.


Selective Serotonin Reuptake Inhibitors , Sex Characteristics , Adult , Humans , Female , Male , United States/epidemiology , Middle Aged , Selective Serotonin Reuptake Inhibitors/therapeutic use , Retrospective Studies , Prevalence , Antidepressive Agents/therapeutic use , Cohort Studies
4.
Circ Res ; 133(10): 810-825, 2023 10 27.
Article En | MEDLINE | ID: mdl-37800334

BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. METHODS: A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. RESULTS: The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB [complement C1r/C1s, Uegf, and Bmp1] domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT (protein kinase B) phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2 (suppression of tumorigenicity-2), a prognostic biomarker for heart failure and inductor of cardiac fibrosis. CONCLUSIONS: CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis.


Cardiomyopathy, Dilated , Heart Failure , Humans , Cardiomyopathy, Dilated/metabolism , Stroke Volume , Genome-Wide Association Study , Ventricular Function, Left , Fibrosis , Antigens, Neoplasm/therapeutic use , Cell Adhesion Molecules/metabolism
5.
Mol Metab ; 77: 101798, 2023 Nov.
Article En | MEDLINE | ID: mdl-37689244

OBJECTIVE: Fibroblast growth factor 21 (FGF21) analogs have been tested as potential therapeutics for substance use disorders. Prior research suggests that FGF21 administration might affect alcohol consumption and reward behaviors. Our recent report showed that plasma FGF21 levels were positively correlated with alcohol use in patients with alcohol use disorder (AUD). FGF21 has a short half-life (0.5-2 h) and crosses the blood-brain barrier. Therefore, we set out to identify molecular mechanisms for both the naïve form of FGF21 and a long-acting FGF21 molecule (PF-05231023) in induced pluripotent stem cell (iPSC)-derived forebrain neurons. METHODS: We performed RNA-seq in iPSC-derived forebrain neurons treated with naïve FGF21 or PF-05231023 at physiologically relevant concentrations. We obtained plasma levels of FGF21 and GABA from our previous AUD clinical trial (n = 442). We performed ELISA for FGF21 in both iPSC-derived forebrain neurons and forebrain organoids. We determined protein interactions using co-immunoprecipitation. Finally, we applied ChIP assays to confirm the occupancy of REST, EZH2 and H3K27me3 by FGF21 using iPSC-derived forebrain neurons with and without drug exposure. RESULTS: We identified 4701 and 1956 differentially expressed genes in response to naïve FGF21 or PF-05231023, respectively (FDR < 0.05). Notably, 974 differentially expressed genes overlapped between treatment with naïve FGF21 and PF-05231023. REST was the most important upstream regulator of differentially expressed genes. The GABAergic synapse pathway was the most significant pathway identified using the overlapping genes. We also observed a significant positive correlation between plasma FGF21 and GABA concentrations in AUD patients. In parallel, FGF21 and PF-05231023 significantly induced GABA levels in iPSC-derived neurons. Finally, functional genomics studies showed a drug-dependent occupancy of REST, EZH2, and H3K27me3 in the promoter regions of genes involved in GABA catabolism which resulted in transcriptional repression. CONCLUSIONS: Our results highlight a significant role in the epigenetic regulation of genes involved in GABA catabolism related to FGF21 action. (The ClinicalTrials.gov Identifier: NCT00662571).

6.
medRxiv ; 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37425775

Cytochrome P450 enzymes including CYP2C19 and CYP2D6 are important for antidepressant metabolism and polymorphisms of these genes have been determined to predict metabolite levels. Nonetheless, more evidence is needed to understand the impact of genetic variations on antidepressant response. In this study, individual clinical and genetic data from 13 studies of European and East Asian ancestry populations were collected. The antidepressant response was clinically assessed as remission and percentage improvement. Imputed genotype was used to translate genetic polymorphisms to metabolic phenotypes (poor, intermediate, normal, and rapid+ultrarapid) of CYP2C19 and CYP2D6. The association of CYP2C19 and CYP2D6 metabolic phenotypes with treatment response was examined using normal metabolizers as the reference. Among 5843 depression patients, a higher remission rate was found in CYP2C19 poor metabolizers compared to normal metabolizers at nominal significance but did not survive after multiple testing correction (OR=1.46, 95% CI [1.03, 2.06], p=0.033, heterogeneity I2=0%, subgroup difference p=0.72). No metabolic phenotype was associated with percentage improvement from baseline. After stratifying by antidepressants primarily metabolized by CYP2C19 and CYP2D6, no association was found between metabolic phenotypes and antidepressant response. Metabolic phenotypes showed differences in frequency, but not effect, between European- and East Asian-ancestry studies. In conclusion, metabolic phenotypes imputed from genetic variants using genotype were not associated with antidepressant response. CYP2C19 poor metabolizers could potentially contribute to antidepressant efficacy with more evidence needed. CYP2D6 structural variants cannot be imputed from genotype data, limiting inference of pharmacogenetic effects. Sequencing and targeted pharmacogenetic testing, alongside information on side effects, antidepressant dosage, depression measures, and diverse ancestry studies, would more fully capture the influence of metabolic phenotypes.

8.
Breast Cancer Res ; 25(1): 57, 2023 05 24.
Article En | MEDLINE | ID: mdl-37226243

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Patients with TNBC are primarily treated with neoadjuvant chemotherapy (NAC). The response to NAC is prognostic, with reductions in overall survival and disease-free survival rates in those patients who do not achieve a pathological complete response (pCR). Based on this premise, we hypothesized that paired analysis of primary and residual TNBC tumors following NAC could identify unique biomarkers associated with post-NAC recurrence. METHODS AND RESULTS: We investigated 24 samples from 12 non-LAR TNBC patients with paired pre- and post-NAC data, including four patients with recurrence shortly after surgery (< 24 months) and eight who remained recurrence-free (> 48 months). These tumors were collected from a prospective NAC breast cancer study (BEAUTY) conducted at the Mayo Clinic. Differential expression analysis of pre-NAC biopsies showed minimal gene expression differences between early recurrent and nonrecurrent TNBC tumors; however, post-NAC samples demonstrated significant alterations in expression patterns in response to intervention. Topological-level differences associated with early recurrence were implicated in 251 gene sets, and an independent assessment of microarray gene expression data from the 9 paired non-LAR samples available in the NAC I-SPY1 trial confirmed 56 gene sets. Within these 56 gene sets, 113 genes were observed to be differentially expressed in the I-SPY1 and BEAUTY post-NAC studies. An independent (n = 392) breast cancer dataset with relapse-free survival (RFS) data was used to refine our gene list to a 17-gene signature. A threefold cross-validation analysis of the gene signature with the combined BEAUTY and I-SPY1 data yielded an average AUC of 0.88 for six machine-learning models. Due to the limited number of studies with pre- and post-NAC TNBC tumor data, further validation of the signature is needed. CONCLUSION: Analysis of multiomics data from post-NAC TNBC chemoresistant tumors showed down regulation of mismatch repair and tubulin pathways. Additionally, we identified a 17-gene signature in TNBC associated with post-NAC recurrence enriched with down-regulated immune genes.


Triple Negative Breast Neoplasms , Humans , Down-Regulation , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Tubulin , DNA Mismatch Repair , Multiomics , Prospective Studies , Neoplasm Recurrence, Local/genetics
9.
Prostate ; 83(7): 649-655, 2023 05.
Article En | MEDLINE | ID: mdl-36924119

OBJECTIVE: Elevated serum chromogranin A (CGA) is associated with intrinsic or treatment-related neuroendocrine differentiation (NED) in men with metastatic castration-resistant prostate cancer (mCRPC). Fluctuations in serum CGA during treatment of mCRPC have had conflicting results. We analyzed the impact of (i) rising serum CGA and (ii) baseline CGA/PSA ratio during treatment to identify associations with abiraterone acetate (AA) therapy. METHODS: Between June 2013 and August 2015, 92 men with mCRPC were enrolled in a prospective trial with uniform serum CGA processing performed before initiating abiraterone acetate/prednisone (AA/P) and serially after 12 weeks of AA/P treatments. Serum CGA was measured using a homogenous automated immunofluorescent assay. Patients receiving proton pump inhibitors or with abnormal renal function were excluded due to possible false elevations of serum CGA (n = 21 excluded), therefore 71 patients were analyzed. All patients underwent a composite response assessment at 12-weeks. Kaplan-Meier estimates and Cox Regression models were used to calculate the association with time-to-treatment failure analyses and overall survival. RESULTS: An increase in chromogranin was associated with a lower risk of treatment failure (hazard ratio [HR]: 0.52, p = 0.0181). The median CGA/PSA ratio was 7.8 (2.6-16.0) and an elevated pretreatment CGA/PSA ratio above the median was associated with a lower risk of treatment failure (HR: 0.54 p value = 0.0185). An increase in CGA was not found to be associated with OS (HR: 0.71, 95% CI: 0.42-1.21, p = 0.207). An elevated baseline CGA/PSA ratio was not associated with OS (HR: 0.62, 95% CI: 0.37-1.03, p = 0.062). An increase in PSA after 12 weeks of treatment was associated with an increased risk of treatment failure (HR: 4.14, CI: 2.21-7.73, p = < 0.0001) and worse OS (HR: 2.93, CI: 1.57-4.45, p = < 0.0001). CONCLUSIONS: We show that an increasing chromogranin on AA/P and an elevated baseline CGA/PSA in patients with mCRPC were associated with a favorable response to AA/P with no changes in survival. There may be limited clinical utility in serum CGA testing to evaluate for lethal NED as AA/P did not induce lethal NED in this cohort. This highlights that not all patients with an increasing CGA have a worse OS.


Abiraterone Acetate , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Abiraterone Acetate/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Chromogranin A , Chromogranins , Prospective Studies , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/pathology , Retrospective Studies , Treatment Outcome
10.
Cancer Res ; 83(8): 1361-1380, 2023 04 14.
Article En | MEDLINE | ID: mdl-36779846

Survival rates of patients with metastatic castration-resistant prostate cancer (mCRPC) are low due to lack of response or acquired resistance to available therapies, such as abiraterone (Abi). A better understanding of the underlying molecular mechanisms is needed to identify effective targets to overcome resistance. Given the complexity of the transcriptional dynamics in cells, differential gene expression analysis of bulk transcriptomics data cannot provide sufficient detailed insights into resistance mechanisms. Incorporating network structures could overcome this limitation to provide a global and functional perspective of Abi resistance in mCRPC. Here, we developed TraRe, a computational method using sparse Bayesian models to examine phenotypically driven transcriptional mechanistic differences at three distinct levels: transcriptional networks, specific regulons, and individual transcription factors (TF). TraRe was applied to transcriptomic data from 46 patients with mCRPC with Abi-response clinical data and uncovered abrogated immune response transcriptional modules that showed strong differential regulation in Abi-responsive compared with Abi-resistant patients. These modules were replicated in an independent mCRPC study. Furthermore, key rewiring predictions and their associated TFs were experimentally validated in two prostate cancer cell lines with different Abi-resistance features. Among them, ELK3, MXD1, and MYB played a differential role in cell survival in Abi-sensitive and Abi-resistant cells. Moreover, ELK3 regulated cell migration capacity, which could have a direct impact on mCRPC. Collectively, these findings shed light on the underlying transcriptional mechanisms driving Abi response, demonstrating that TraRe is a promising tool for generating novel hypotheses based on identified transcriptional network disruptions. SIGNIFICANCE: The computational method TraRe built on Bayesian machine learning models for investigating transcriptional network structures shows that disruption of ELK3, MXD1, and MYB signaling cascades impacts abiraterone resistance in prostate cancer.


Androstenes , Drug Resistance, Neoplasm , Gene Regulatory Networks , Machine Learning , Prostatic Neoplasms , Bayes Theorem , Transcription, Genetic , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Humans , Male , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Proto-Oncogene Proteins c-myb/genetics , Androstenes/therapeutic use , Gene Expression Profiling , Computer Simulation
11.
Drug Alcohol Depend ; 243: 109753, 2023 02 01.
Article En | MEDLINE | ID: mdl-36608483

Lifetime history of major depressive disorder (MDD) has a sex-specific association with pretreatment alcohol consumption in patients with alcohol dependence. Here, we investigated the association of genetic load for MDD estimated using a polygenic risk score (PRS) with pretreatment alcohol consumption assessed with Timeline Follow Back in a sample of 287 men and 156 women meeting DSM-IV-TR criteria for alcohol dependence. Preferred drinking situations were assessed using the Inventory of Drug Taking Situations (IDTS). Linear models were used to test for association of normalized alcohol consumption measures with the MDD-PRS, adjusting for ancestry, age, sex, and number of days sober at baseline. We fit models both with and without adjustment for MDD history and alcohol-use-related PRSs as covariates. Higher MDD-PRS was associated with lower 90-day total alcohol consumption in men (ß = -0.16, p = 0.0012) but not in women (ß = 0.11, p = 0.18). The association of MDD-PRS with IDTS measures was also sex-specific: higher MDD-PRS was associated with higher propensity to drink in temptation-related situations in women, while the opposite (negative association)was found in men. MDD-PRS was not associated with lifetime MDD history in our sample, and adjustment for lifetime MDD and alcohol-related PRSs did not impact the results. Our results suggest that genetic load for MDD impacts pretreatment alcohol consumption in a sex-specific manner, which is similar to, but independent from, the effect of history of MDD. The clinical implications of these findings and contributing biological and psychological factors should be investigated in future studies.


Alcoholism , Depressive Disorder, Major , Male , Humans , Female , Alcoholism/epidemiology , Alcoholism/genetics , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/psychology , Genetic Predisposition to Disease , Alcohol Drinking/genetics , Risk Factors , Multifactorial Inheritance , Genome-Wide Association Study
12.
Cancer Res ; 83(3): 456-470, 2023 02 03.
Article En | MEDLINE | ID: mdl-36469363

Androgen receptor (AR) is expressed in 80% to 90% of estrogen receptor α-positive (ER+) breast cancers. Accumulated evidence has shown that AR is a tumor suppressor and that its expression is associated with improved prognosis in ER+ breast cancer. However, both a selective AR agonist (RAD140) and an AR inhibitor (enzalutamide, ENZ) have shown a therapeutic effect on ER+ breast cancer, so the potential for clinical application of AR-targeting therapy for ER+ breast cancer is still in dispute. In this study, we evaluated the efficacy of ENZ and RAD140 in vivo and in vitro in AR+/ER+ breast cancer models, characterizing the relationship of AR and ER levels to response to AR-targeting drugs and investigating the alterations of global gene expression and chromatin binding of AR and ERα after ENZ treatment. In the AR-low setting, ENZ directly functioned as an ERα antagonist. Cell growth inhibition by ENZ in breast cancer with low AR expression was independent of AR and instead dependent on ER. In AR-high breast cancer models, AR repressed ERα signaling and ENZ promoted ERα signaling by antagonizing AR. In contrast, RAD140 activated AR signaling and suppressed AR-high tumor growth by deregulating ERα expression and blocking ERα function. Overall, analysis of the dynamic efficacies and outcomes of AR agonist, and antagonist in the presence of different AR and ERα levels reveals regulators of response and supports the clinical investigation of ENZ in selected ER+ tumors with a low AR/ER ratio and AR agonists in tumors with a high AR/ER ratio. SIGNIFICANCE: The ratio of androgen receptor to estrogen receptor in breast cancer dictates the response to AR-targeted therapies, providing guidelines for developing AR-directed treatment strategies for patients with breast cancer.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Androgens/pharmacology , Cell Line, Tumor
13.
Drug Metab Dispos ; 51(1): 1-7, 2023 01.
Article En | MEDLINE | ID: mdl-36153008

Cytochrome P450s (CYPs) display significant inter-individual variation in expression, much of which remains unexplained by known CYP single-nucleotide polymorphisms (SNPs). Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators for several drug-metabolizing CYPs including CYP3A4 However, transcription factors (TFs) that might influence CYP expression through an effect on TSPYL expression are unknown. Therefore, we studied regulators of TSPYL expression in hepatic cell lines and their possible SNP-dependent variation. Specifically, we identified candidate TFs that might influence TSPYL expression using the ENCODE ChIPseq database. Subsequently, the expression of TSPYL1/2/4 as well as that of selected CYP targets for TSPYL regulation were assayed in hepatic cell lines before and after knockdown of TFs that might influence CYP expression through TSPYL-dependent mechanisms. Those results were confirmed by studies of TF binding to TSPYL1/2/4 gene promoter regions. In hepatic cell lines, knockdown of the REST and ZBTB7A TFs resulted in decreased TSPYL1 and TSPYL4 expression and increased CYP3A4 expression, changes reversed by TSPYL1/4 overexpression. Potential binding sites for REST and ZBTB7A on the promoters of TSPYL1 and TSPYL4 were confirmed by chromatin immunoprecipitation. Finally, common SNP variants in upstream binding sites on the TSPYL1/4 promoters were identified and luciferase reporter constructs confirmed SNP-dependent modulation of TSPYL1/4 gene transcription. In summary, we identified REST and ZBTB7A as regulators of the expression of TSPYL genes which themselves can contribute to regulation of CYP expression and-potentially-of drug metabolism. SNP-dependent modulation of TSPYL transcription may contribute to individual variation in both CYP expression and-downstream-drug response phenotypes. SIGNIFICANCE STATEMENT: Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators of cytochrome P450 (CYP) gene expression. Here, we report that variation in TSPYL expression as a result of the effects of genetically regulated TSPYL transcription factors is an additional factor that could result in downstream variation in CYP expression and potentially, as a result, variation in drug biotransformation.


DNA-Binding Proteins , Transcription Factors , Male , Animals , Transcription Factors/genetics , DNA-Binding Proteins/genetics , Cytochrome P-450 CYP3A/genetics , Testis , Cell Line, Tumor , Cytochrome P-450 Enzyme System/genetics
14.
Front Pharmacol ; 13: 1047318, 2022.
Article En | MEDLINE | ID: mdl-36518674

The cytochromes P450 (CYPs) represent a large gene superfamily that plays an important role in the metabolism of both exogenous and endogenous compounds. We have reported that the testis-specific Y-encoded-like proteins (TSPYLs) are novel CYP gene transcriptional regulators. However, little is known of mechanism(s) by which TSPYLs regulate CYP expression or the functional consequences of that regulation. The TSPYL gene family includes six members, TSPYL1 to TSPYL6. However, TSPYL3 is a pseudogene, TSPYL5 is only known to regulates the expression of CYP19A1, and TSPYL6 is expressed exclusively in the testis. Therefore, TSPYL 1, 2 and 4 were included in the present study. To better understand how TSPYL1, 2, and 4 might influence CYP expression, we performed a series of pull-downs and mass spectrometric analyses. Panther pathway analysis of the 2272 pulled down proteins for all 3 TSPYL isoforms showed that the top five pathways were the Wnt signaling pathway, the Integrin signaling pathway, the Gonadotropin releasing hormone receptor pathway, the Angiogenesis pathway and Inflammation mediated by chemokines and cytokines. Specifically, we observed that 177 Wnt signaling pathway proteins were pulled down with the TSPYLs. Subsequent luciferase assays showed that TSPYL1 knockdown had a greater effect on the activation of Wnt signaling than did TSPYL2 or TSPYL4 knockdown. Therefore, in subsequent experiments, we focused our attention on TSPYL1. HepaRG cell qRT-PCR showed that TSPYL1 regulated the expression of CYPs involved in cholesterol-metabolism such as CYP1B1 and CYP7A1. Furthermore, TSPYL1 and ß-catenin regulated CYP1B1 expression in opposite directions and TSPYL1 appeared to regulate CYP1B1 expression by blocking ß-catenin binding to the TCF7L2 transcription factor on the CYP1B1 promoter. In ß-catenin and TSPYL1 double knockdown cells, CYP1B1 expression and the generation of CYP1B1 downstream metabolites such as 20-HETE could be restored. Finally, we observed that TSPYL1 expression was associated with plasma cholesterol levels and BMI during previous clinical studies of obesity. In conclusion, this series of experiments has revealed a novel mechanism for regulation of the expression of cholesterol-metabolizing CYPs, particularly CYP1B1, by TSPYL1 via Wnt/ß-catenin signaling, raising the possibility that TSPYL1 might represent a molecular target for influencing cholesterol homeostasis.

15.
Front Oncol ; 12: 999302, 2022.
Article En | MEDLINE | ID: mdl-36523978

Poly(ADP-ribose) (PAR) polymerase inhibitors (PARPi) either have been approved or being tested in the clinic for the treatment of a variety of cancers with homologous recombination deficiency (HRD). However, cancer cells can develop resistance to PARPi drugs through various mechanisms, and new biomarkers and combination therapeutic strategies need to be developed to support personalized treatment. In this study, a genome-wide CRISPR screen was performed in a prostate cancer cell line with 3D culture condition which identified novel signals involved in DNA repair pathways. One of these genes, TBL1XR1, regulates sensitivity to PARPi in prostate cancer cells. Mechanistically, we show that TBL1XR1 interacts with and stabilizes SMC3 on chromatin and promotes γH2AX spreading along the chromatin of the cells under DNA replication stress. TBL1XR1-SMC3 double knockdown (knockout) cells have comparable sensitivity to PARPi compared to SMC3 knockdown or TBL1XR1 knockout cells, and more sensitivity than WT cells. Our findings provide new insights into mechanisms underlying response to PARPi or platin compounds in the treatment of malignancies.

16.
Nucleic Acids Res ; 50(20): 11635-11653, 2022 11 11.
Article En | MEDLINE | ID: mdl-36399508

Understanding the function of non-coding genomic sequence variants represents a challenge for biomedicine. Many diseases are products of gene-by-environment interactions with complex mechanisms. This study addresses these themes by mechanistic characterization of non-coding variants that influence gene expression only after drug or hormone exposure. Using glucocorticoid signaling as a model system, we integrated genomic, transcriptomic, and epigenomic approaches to unravel mechanisms by which variant function could be revealed by hormones or drugs. Specifically, we identified cis-regulatory elements and 3D interactions underlying ligand-dependent associations between variants and gene expression. One-quarter of the glucocorticoid-modulated variants that we identified had already been associated with clinical phenotypes. However, their affected genes were 'unmasked' only after glucocorticoid exposure and often with function relevant to the disease phenotypes. These diseases involved glucocorticoids as risk factors or therapeutic agents and included autoimmunity, metabolic and mood disorders, osteoporosis and cancer. For example, we identified a novel breast cancer risk gene, MAST4, with expression that was repressed by glucocorticoids in cells carrying the risk genotype, repression that correlated with MAST4 expression in breast cancer and treatment outcomes. These observations provide a mechanistic framework for understanding non-coding genetic variant-chemical environment interactions and their role in disease risk and drug response.


Glucocorticoids , Regulatory Sequences, Nucleic Acid , Glucocorticoids/genetics , Glucocorticoids/metabolism , Risk Factors , Humans , Pharmacogenetics , Quantitative Trait Loci
17.
Front Pharmacol ; 13: 984383, 2022.
Article En | MEDLINE | ID: mdl-36263124

Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help augment pharmacotherapy selection and improve the objectivity of suicide risk assessments. Towards this goal, this study sought to use network science approaches to establish a multi-omics (genomic and metabolomic) signature of antidepressant response and lifetime history of attempted suicide in adults with MDD. Methods: Single nucleotide variants (SNVs) which associated with suicide attempt(s) in the literature were identified and then integrated with a) p180-assayed metabolites collected prior to antidepressant pharmacotherapy and b) a binary measure of antidepressant response at 8 weeks of treatment using penalized regression-based networks in 245 'Pharmacogenomics Research Network Antidepressant Medication Study (PGRN-AMPS)' and 103 'Combining Medications to Enhance Depression Outcomes (CO-MED)' patients with major depressive disorder. This approach enabled characterization and comparison of biological profiles and associated antidepressant treatment outcomes of those with (N = 46) and without (N = 302) a self-reported lifetime history of suicide attempt. Results: 351 SNVs were associated with suicide attempt(s) in the literature. Intronic SNVs in the circadian genes CLOCK and ARNTL (encoding the CLOCK:BMAL1 heterodimer) were amongst the top network analysis features to differentiate patients with and without a prior suicide attempt. CLOCK and ARNTL differed in their correlations with plasma phosphatidylcholines, kynurenine, amino acids, and carnitines between groups. CLOCK and ARNTL-associated phosphatidylcholines showed a positive correlation with antidepressant response in individuals without a prior suicide attempt which was not observed in the group with a prior suicide attempt. Conclusion: Results provide evidence for a disturbance between CLOCK:BMAL1 circadian processes and circulating phosphatidylcholines, kynurenine, amino acids, and carnitines in individuals with MDD who have attempted suicide. This disturbance may provide mechanistic insights for differential antidepressant pharmacotherapy outcomes between patients with MDD with versus without a lifetime history of attempted suicide. Future investigations of CLOCK:BMAL1 metabolic regulation in the context of suicide attempts may help move towards biologically-augmented pharmacotherapy selection and stratification of suicide risk for subgroups of patients with MDD and a lifetime history of attempted suicide.

18.
Mol Psychiatry ; 2022 Oct 27.
Article En | MEDLINE | ID: mdl-36302966

The opioid epidemic represents a national crisis. Oxycodone is one of the most prescribed opioid medications in the United States, whereas buprenorphine is currently the most prescribed medication for opioid use disorder (OUD) pharmacotherapy. Given the extensive use of prescription opioids and the global opioid epidemic, it is essential to understand how opioids modulate brain cell type function at the single-cell level. We performed single nucleus RNA-seq (snRNA-seq) using iPSC-derived forebrain organoids from three male OUD subjects in response to oxycodone, buprenorphine, or vehicle for seven days. We utilized the snRNA-seq data to identify differentially expressed genes following drug treatment using the Seurat integrative analysis pipeline. We utilized iPSC-derived forebrain organoids and single-cell sequencing technology as an unbiased tool to study cell-type-specific and drug-specific transcriptional responses. After quality control filtering, we analyzed 25787 cells and identified sixteen clusters using unsupervised clustering analysis. Our results reveal distinct transcriptional responses to oxycodone and buprenorphine by iPSC-derived brain organoids from patients with OUD. Specifically, buprenorphine displayed a significant influence on transcription regulation in glial cells. However, oxycodone induced type I interferon signaling in many cell types, including neural cells in brain organoids. Finally, we demonstrate that oxycodone, but not buprenorphine activated STAT1 and induced the type I interferon signaling in patients with OUD. These data suggest that elevation of STAT1 expression associated with OUD might play a role in transcriptional regulation in response to oxycodone. In summary, our results provide novel mechanistic insight into drug action at single-cell resolution.

19.
Mol Cancer Res ; 20(12): 1739-1750, 2022 12 02.
Article En | MEDLINE | ID: mdl-36135372

We identified resistance mechanisms to abiraterone acetate/prednisone (AA/P) in patients with metastatic castration-resistant prostate cancer (mCRPC) in the Prostate Cancer Medically Optimized Genome-Enhanced Therapy (PROMOTE) study.We analyzed whole-exome sequencing (WES) and RNA-sequencing data from 83 patients with metastatic biopsies before (V1) and after 12 weeks of AA/P treatment (V2). Resistance was determined by time to treatment change (TTTC).At V2, 18 and 11 of 58 patients had either short-term (median 3.6 months; range 1.4-4.5) or long-term (median 29 months; range 23.5-41.7) responses, respectively. Nonresponders had low expression of TGFBR3 and increased activation of the Wnt pathway, cell cycle, upregulation of AR variants, both pre- and posttreatment, with further deletion of AR inhibitor CDK11B posttreatment. Deletion of androgen processing genes, HSD17B11, CYP19A1 were observed in nonresponders posttreatment. Genes involved in cell cycle, DNA repair, Wnt-signaling, and Aurora kinase pathways were differentially expressed between the responder and non-responder at V2. Activation of Wnt signaling in nonresponder and deactivation of MYC or its target genes in responders was detected via SCN loss, somatic mutations, and transcriptomics. Upregulation of genes in the AURKA pathway are consistent with the activation of MYC regulated genes in nonresponders. Several genes in the AKT1 axis had increased mutation rate in nonresponders. We also found evidence of resistance via PDCD1 overexpression in responders. IMPLICATIONS: Finally, we identified candidates drugs to reverse AA/P resistance: topoisomerase inhibitors and drugs targeting the cell cycle via the MYC/AURKA/AURKB/TOP2A and/or PI3K_AKT_MTOR pathways.


Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prednisone/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Aurora Kinase A , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Abiraterone Acetate/adverse effects
20.
Clin Transl Sci ; 15(11): 2758-2771, 2022 11.
Article En | MEDLINE | ID: mdl-36128656

Alternative polyadenylation (APA) is a common genetic regulatory mechanism that generates distinct 3' ends for RNA transcripts. Changes in APA have been associated with multiple biological processes and disease phenotypes. However, the role of hormones and their drug analogs in APA remains largely unknown. In this study, we investigated transcriptome-wide the impact of glucocorticoids on APA in 30 human B-lymphoblastoid cell lines. We found that glucocorticoids could regulate APA for a subset of genes, possibly by changing the expression of 142 RNA-binding proteins, some with known APA-regulating properties. Interestingly, genes with glucocorticoid-mediated APA were enriched in viral translation-related pathways, while genes with glucocorticoid-mediated expression were enriched in interferon and interleukin pathways, suggesting that glucocorticoid-mediated APA might result in functional consequences distinct from gene expression. For example, glucocorticoids, a pharmacotherapy for severe COVID-19, were found to change the APA but not the expression of LY6E, an important antiviral inhibitor in coronavirus diseases. Glucocorticoid-mediated APA was also cell-type-specific, suggesting an action of glucocorticoids that may be unique to immune regulation. We also observed evidence for genotype-dependent glucocorticoid-mediated APA (referred to as pharmacogenomic-alterative polyadenylation quantitative trait loci), providing potential functional mechanisms for a series of common genetic variants that had previously been associated with immune disorders, but without a clear mechanism. In summary, this study reports a series of observations regarding the impact of glucocorticoids on APA, raising the possibility that this mechanism might have implications for both disease pathophysiology and drug therapy.


COVID-19 , Polyadenylation , Humans , Polyadenylation/genetics , Transcriptome , Glucocorticoids/pharmacology , RNA-Binding Proteins
...